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Abstract—Road transport is the second largest dimension
of carbon emission, both nationally in the UK and locally in
Newcastle upon Tyne, contributing about 33% of total emission
in 2020. In line with the UK’s target to reach net zero by 2050
(and the city of Newcastle upon Tyne’s ambition to do so by 2030),
electric vehicles (EVs) play a critical role in meeting net zero road
transportation though it does not automatically imply a reduction
of overall emission nationally or globally if the electricity to
charge EVs is sourced from the fossil fuels. To achieve optimal EV
charging, a better understanding of the uncertainties of ORES
power generation is necessary. ANN (Artificial Neural Network)
and time series forecasting methods are used in this paper to
model wind and solar power generation and the power generation
of ORES. Such a model is able to represent the relationship
between the power generation and the wind speed as well as solar
irradiation, which is of significant uncertainties due to weather
changes in both short-time (hourly) and long-term (seasonally).
The proposed method uses historical solar irradiance and wind
speed data, together with numerical weather prediction (NWP)
data. The proposed neural network is verified with the historic
data at Newcastle upon Tyne for the years 2020 to 2022. The
proposed methods have a root mean square error (RSME) of
2.26 (m/s) in wind speed modelling, and the RSME of solar
irradiance is 50.79 (W/m2). The uncertainties analysis shows
that the uncertainties in wind speed at Newcastle upon Tyne can
be modelled as a Weibull distribution with parameters A = 19.98
and B = 1.91.

Index Terms—ORES, ANN, Wind power, Renewable energy,
Forecast

I. INTRODUCTION

In line with the UK’s target to reach Net Zero by 2050,
one of the major goals of the EPSRC Energy theme is to
increase the efficient use of renewable energy assisted by
digital technologies. Electrical vehicles (EVs) charged by
renewable energy are one of the solutions towards carbon-
neutral road transport, which is the seconnd largest carbon
emission both nationally in the UK and locally in Newcastle
upon Tyne or Gateshead (contributing about 33% of total
emission in 2020)[1]. The key issue is to use more renewable
energy source (RES) for EV electricity usage, but the public
strategy/guidance does not clearly outline considering charging
management through renewable energy sources. Despite large-
scale major RES projects, a recent trend in RES is that there

will be increasing amount of small-scale RES installed on-site
[2], here referred to as ORES.

Research related to this paper as [3] used a unique combina-
tion of meteorological time series and stochastic simulations
to provide consistent variable renewable energy (VRE) gener-
ation and forecast error time series with temporal resolution
in the minute scale. The contribution of [4] is to model urban
energy requirements, namely local electricity consumption and
on-site renewable power generation, using solely open source
data and models.[5] assessed errors in projections pertaining
to the capacity and production of renewable energy in the
United States as well as those countries of the European Union
that have strong commitments to green energy supply. [6]
used a deep learning network to forecast the wind turbine
power based on a long short-term memory network (LSTM)
algorithm and applied a Gaussian mixture model (GMM) to
analyze the error distribution characteristics of short-term wind
turbine power forecasting. [7] proposed an aggregator for the
optimal scheduling of a Electric Vehicle (EV) charging station.
[8] proposed a deep learning method based on a discrete
wavelet transformation and long short-term memory method
(DWT-LSTM) as well as a scheduling framework for the
integrated modelling and management of energy demand and
supply for buildings. [9] presented an evaluation framework
for Techno-Economic-Environmental (TEE) impact of differ-
ent networks integration levels and storage devices on perfor-
mance of Integrated Gas and Electricity Networks (IGENs).
[10] showed analytically that there are two potential sources
of uncertainty in forecast reconciliation.

Based on the above research and methodology, this paper’s
first provides the simulation environment for renewable energy
input for future research. A neural network is trained offline
using historical data to forecast solar radiance and wind speed
in this paper. The distribution of errors, which represents
uncertainty, is formed by the errors generated during training.
The actual wind speed and solar energy data in the intended
simulation environment can be considered the expected wind
speed and solar irradiance plus the random error distribution.
Second, this work proposed wind and solar energy models
that can convert wind speed and solar irradiance into energy.
Third, neural networks and time series algorithms are used to



forecast solar irradiance and wind speed. Finally, this research
investigates the distribution of the Newcastle upon Tyne, which
follows the Weibull distribution.

II. PROBLEM DESCRIPTION

The EV charging system and the on-site renewable energy
sources to be investigated in this paper is illustrated in Fig. 1.
which consists of various on-site Renewable Energy Sources
(ORES), such as PV, wind generators, etc, a stationary battery
energy storage system (BESS), a set of EV chargers (either
AC or DC) and a ”Energy Hub”. They are connected to a
local distribution network that is connected to the main grid
via a transformer. The Energy Hub unit is a bank of uni-
directional or bi-directional inverters that connect the ORES,
BESS and EV charging stations and controls the energy
exchange between the supply side and the demand side. The
BESS and PV are connected through a DC bus.

In the sense of net zero road transport, the idea of such a
EV charging system with on-site renewable energy sources
is to utilise as much as possible the renewable electricity
from the ORES to charge the EV, at minimum capacity
requirement on the BESS, thus saving the investment and
operation cost of the BESS. In other word, the aim is to
improve the self-consumption utilisation of ORES with less
energy imported from/exported to the grid and the BESS.
iaiton of The challenge is how to integrate the various parts
to maximize their efficiency and economy.

Fig. 1. A grid-connected solar-wind hybrid electric vehicle charging system
for electric fleet depot with self-generated on-site renewable energy

However, the uncertainties at both the supply side and the
demand side make it is difficult to find the optimal charging
schedule to maximize the utilisation of ORES for EV charging.
The intermittent renewable energy (wind and solar power)
generation is time varying and it is challenge to have an
very accurate forecast of how much renewable energy will
be generated. At the EV energy demand side, the uncertainty
of EV charging demands are varying due to the varying
travelling demands, user behaviours, weather and traffics, etc.
In this paper, the focus is the supply side to model the on-
site renewable energy system and analyse it uncertainties.

The purpose is to develop a realistic model to mimic the
varying features of the PV and wind power generation, so
that this model can be used as an ”environment” for training
and evaluating a reinforcement learning agent to optimize the
EV charging schedule.

The volatility of renewable energy generation [11] and the
forecast error of renewable energy output are the key sources
of uncertainty on the source side. Environmental conditions
can significantly affect the output of renewable energy, and
the randomness of weather can affect the power of wind
turbines. The Weibull distribution is often assumed to govern
wind speed. The total horizontal sun irradiation, temperature,
humidity, cloud cover, air pressure, and other factors, such
wind speed, have a significant impact on photovoltaic output
power [12]. According to present research, forecasting models
of renewable energy output can be split into physical models
and statistical models in renewable energy forecasting. The
time series approach, artificial neural network method, and
support vector machine method are all commonly used statis-
tical forecasting methods. The data from the previous day’s
renewable energy generation is utilised as input data for the
next day. In most cases, there is a difference between the
actual and the expected value of renewable energy generation.
Renewable energy generation has a day-ahead forecast error
of 25%–40% [11]. On the other hand, in this paper’s use
of renewable energy, the real charging load of EVs shows
significant uncertainty due to random changes caused by
vehicle operation, traffic, the environment, people behavior
and other factors [13]. To simulate EV load demand and
charging time, study [14] employed fuzzy approaches to split
the essential parameters in EV load modelling into categories.
Both the spatial and temporal uncertainty of EVs can be
considered using the hybrid fuzzy-MCS technique.

In summary, this paper employs a neural network and time
series technique to forecast the amount of energy produced
depending on the parameters of a solar and wind turbine.
The inaccuracies that arise in the projections are the source
of uncertainty in energy generation. As shown in Fig. 2, this
method can establish an environment where energy production
combined with the uncertainty of EV charging can serve as
a foundation for subsequent energy supply and generation
matching.

III. MODELLING WITH POWER GENERATION
UNCERTAINTIES

In this section, neural networks are adopted to develop the
model to simulate the uncertain wind power and solar power
generation. Fig. 2 illustrates the overall modelling, where
PE(k), PG(k), PB(k), PS(k) and PW (k) are the Ev demand
power, the power from the grid, the battery power, the solar
power and wind power at the time interval k, respectively. All
these power constitute the system environment and output the
state SK . In this paper, the neural network is trained offline
with historical wind speed and solar radiation data, utilising
neural network (NN) and time series approaches. The error
distribution generated throughout the training procedure is the



uncertainty. As a result, the wind speed and solar radiation
data are the neural network’s predictions plus the randomly
generated errors. This figure is taken as the actual wind speed
and solar radiation statistics in this scenario. Renewable energy
is created for charging the EVs using the wind and solar
models presented in this section.

Fig. 2. Diagram of the electric fleet depot use case with self-generated
renewable energy

A. Neural Networks for wind speed forecasting

Neural networks are a type of machine learning model that
processes data by forming structures that resemble synaptic
connections in the brain. The units that process information
in neural networks are often classified into three categories:
input unit, output unit, and hidden unit as Fig. 3 shows. The
input unit receives signals and data from the outside, while the
output unit produces the system’s output. The hidden unit is
located between the input and output units, and its construction
is not visible from outside the network system. The strength
of the connections between neurons is influenced by their
characteristics such as weights, in addition to the three units
that process information.

Fig. 3. Neural network structure diagram

The creation of a recurrent or feedback neural network
as a nonlinear autoregressive network with exogenous inputs
(NARX) model is the focus of this research. The network’s
learning process is aided by the Levenberg–Marquardt algo-
rithm. A recurrent neural network is a network model that
includes at least one path that returns back to the starting
point, or to a neuron with feedback. As in feedforward neural
networks, each connection in this network is given a delay

in addition to a parameter[15]. NARX is one example of a
recurrent neural network that predicts future output values
based on past values of and their related input values, as
demonstrated in:

y(t) = f(x(t− 1), . . . , x(t−m), y(t− 1), . . . , y(t−n)) (1)

where m is the delay of the input x(t), n is the delay of the
output y(t). The Levenberg-Marquardt algorithm is favoured
for small networks since it requires more memory but takes
less time to compute. When the maximum number of epochs
is reached, the maximum time is reached, performance is
minimised to the target, or the performance gradient falls
below the minimum gradient, training is terminated. The Root
Mean Square Error (RMSE) is used to express the training’s
performance, which is:

RMSE =

√√√√1

a

a∑
i=1

(yi − ŷi)2 (2)

where the number of samples is indicated by a, the actual
value of the ith sample is indicated by yi, and the predicted
value of the ith sample is shown by ŷi.

B. Wind power model

The mechanical power taken from the available wind energy
by the wind turbine blades provides the electrical output power
in the Wind turbine systems. From [16], the mechanical power
extracted by a wind turbine is calculated using aerodynamic
theory as follows:

Pm =
1

2
ρAu3(t)Cp(θ, λ) (3)

where pm represents the mechanical power extracted by a wind
turbine, A represents the blade swept area, and u represents the
wind speed. Cp(θ, λ) is the fraction of available wind energy
that a wind turbine harvests. θ is the blade pitch angle, and λ
is the tip speed ratio. It assumes a fixed rotational speed and
ignore the fraction, the electrical power output of the wind
turbine can be simplified as:

Pm =
1

2
ρAu3(t) (4)

Thus, the corresponding output curves for wind speed - power
generation are as fig.4. Where ur stands for rated wind speed,
uc for cut-in speed (when the electrical power output increases
above zero and power production begins), and uf for furling
wind speed (when the turbine is shut down to prevent structural
damage).Per is the rated power with the value of 1.5Mw. It
supposes that output power grows between uc and ur and
then remains constant between ur and uf as shown in the
diagram. All other conditions result in zero power output. As
a result, the aforementioned conditions can be condensed into
the following piece-wise function:

Pm(t) =


0 , if u(t) ≤ uc

Per(u
3
c−u3(t))

u3
c−u3

r
, if uc < u(t) ≤ ur

Per , if ur < u(t) ≤ uf

0 , if uf ≤ u(t)

(5)



Fig. 4. Neural network structure diagram

According to equation (3), the problem of wind energy gen-
eration can be evaluated using the parameters of the projected
wind speed and the actual wind turbine used. Combined with
equation (1), the prediction of the wind speed can be expressed
as:

u(t) = WNN (NWP (t− 1), . . . , NWP (t−m),

u(t− 1), . . . , u(t− n))
(6)

where WNN (NWP, u) is the neural network function for
wind speed. NWP is the NWP data of the last m hours.
n is the last n hours of the wind speed.

C. PV model

Akhbari et al [17] expressed the DC power provided by a
solar PV source as:

Pdc(t) = Ieff (t)ηgAs (7)

where Ieff (t) represents the incident efficient radiance
(Wm−2), ηg represents the solar PV source efficiency and As

represents the solar PV source effective surface area (m2). The
efficiency of solar PV sources is affected by ambient temper-
ature, temperature loss coefficient, and nominal operating cell
temperature, according to [18]. The solar energy generation is
modelled in this paper, using solar panels installed on the top
floor of the Pandon building at Northumbria University’s city
centre campus. It has a 20% PV efficiency (ηg = 20%) and an
effective area of 188 m2 (As = 188). Because the power of
solar energy and solar incident efficient radiance are linearly
related in the equation above, the key to forecasting solar
energy output is to estimate Ieff (t). Combined with equation
(1), the prediction of the solar irradiance can be expressed as:

Ieff (t) = WNN (NWP (t− 1), . . . , NWP (t−m,),

Ieff (t− 1), . . . , Ieff (t− n,))
(8)

this paper utilise the same technique for forecasting solar
irradiance as it do for predicting wind speed. However, the

values of m, and n, in this case differ from those in the neural
network time series approach of wind speed.

D. Uncertainty model

The uncertainty in this study is mostly expressed in the
difference between the predicted and true values. The key to
taking into account system uncertainty is to create an accurate
renewable energy probability distribution model. This research
forecasts historical wind speed and solar irradiation data using
the neural network prediction model described above. The final
result can be used to construct an error probability distribution.
This error distribution represents the forecast’s uncertainty. So
in the model designed in this paper, the true value of the
renewable energy source (wind speed and solar irradiance)
can be expressed as:

SAct(t) = SPred(t) + e(t) (9)

where SAct(t) is the actual renewable energy source can be
used as an input energy in the design system of this paper (see
Fig.2). SPred(t) is the output data from the neural networks.
e(t) is the error generated from the historical data.

IV. RESULTS

This section of the paper analyses weather data for the
Newcastle upon Tyne, using historical data. This data was
used to train and test a neural network model. The errors in
the neural network were used to create uncertainty models
for wind speed and solar radiation. Finally, Newcastle upon
Tyne’s actual solar and wind speed statistics are compared to
the predictions.

A. Historical data analysis

Fig. 5. Newcastle upon Tyne wind
speed distribution

Fig. 6. Newcastle upon Tyne solar
irradiance full day distribution

In the paper, wind speed, solar radiation and NWP data
for Newcastle-upon-Tyne with latitude 54.9792°N, longitude
1.59446°W, from April 1st, 2020 to April 1st, 2022 is utilized.
[19]. Fig. 5 and Fig. 6, respectively, show wind speed and sun
radiation distribution statistics. The wind speed distribution
follows the Weibull distribution parameter A = 19.98 and
B = 1.91. The Weibull distribution is commonly used in
industrial manufacturing, weather prediction, reliability and
failure analysis, as well as life insurance models for the
quantification of recurring claims. Its probability density is:

f(x;A,B) =

{
B
A ( x

A )B−1e−(x/A)B ifx ≤ 0

0 ifx > 0
(10)



where, A is the scale parameter and B is the shape parameter.
The historical solar radiation data are distributed by being
averaged to 24 hours per day, as shown in Fig. 6. The
fluctuation range is shown in the area within the dashed line
in this figure.

B. Neural network prediction renewable source

Fig. 7. Neural network performance
for wind speed

Fig. 8. Neural network performance
for solar irradiance

For wind speed forecasts, the neural network utilised in this
paper uses NWP data and the first 15 hours of wind speed data.
The solar irradiance neural network is fed with NWP data
and the first 12 hours of solar irradiance. The first n hours
were chosen depending on the degree of correlation with the
lowest trend. For wind speed and solar radiation, the neural
network has four hidden layers with ten neurons each and
one output layer. In the algorithm, the collected data were
randomly divided for training, validation, and testing, with
70% of the data being used for training and the model being
adjusted based on its error, 15% of data being used to measure
model generalisation and signalling the end of training when
generalisation stops improving, and the remaining 15% of the
data being used for testing in order to provide an independent
measure of the model’s performance.

The frequency of errors in training, validation, and testing
data sets is presented in the error histograms in Fig. 7 and Fig.
8, respectively. The difference between the network’s outputs
and the expected outputs is used to calculate the error. The
majority of wind speed errors fall between -4.034 and 3.759
(m/s), and the majority of solar irrdance errors fall between
-62.95 and 53.17 (W/m2). The RMSE values were calculated
to evaluate the training’s outcomes. The root average squared
difference between the network’s outputs and the expected
outputs is the RMSE. The lower the RMSE value, the better
the performance. The RMSEs values for wind speed and solar
irrdance, respectively, are 2.26 and 50.79.

C. Uncertainty in renewable energy generation
Fig. 9 and Fig. 10, respectively, demonstrate the error statis-

tics provided by the trained neural network for the predictions
of wind speed and solar radiance, respectively. The difference
between the predicted and actual values is the error. The
distribution of errors does not follow the Gaussian distribution
after statistical tests. Accordingly, the predicted values plus the
errors randomly created in Fig. 9 and Fig. 10 can be utilised to
build up the simulation to generate real wind speed and solar
radiance.

Fig. 9. Wind speed error distribution Fig. 10. Solar irradiance error distri-
bution

D. Practical verification

Fig. 11. Wind speed practical verifi-
cation

Fig. 12. Predicted wind power

The wind speed for 31 hours following April 2nd, 2022
00:00 is utilised as the validation set in this paper in order to
validate the neural network’s accuracy, as shown in Fig. 11.
It displays a 0.3419m/s average error. According to equation
(3), the projected wind speed is converted into wind energy in
Fig. 12.

The solar radiation for 36 hours after April 1, 2022 is
utilised as the validation set in this paper to validate the neural
network’s accuracy, as shown in fig.13. It has a 30.5652W/m2

average error. According to equation (4), the projected solar
irradiance is converted to solar energy in Fig.14. The energy
generated by solar panels on the roof of Northumbria Uni-
versity’s Pandon Building is used as the validation method in
this paper. The projected solar irradiance generated energy, the
actual solar irradiance generated energy, and the solar energy
created by the actual device are all represented in fig.14.

Fig. 13. Solar irradiance practical
verification

Fig. 14. Predicted solar power

V. CONCLUSION

Using NWP data as well as historical data, this paper
successfully created and evaluated an artificial neural network



model in the form of a recurrent NARX model to reliably
estimate hourly solar radiation and wind speed in Newcastle
upon Tyne, UK. This paper uses realistic renewable energy
sources combined with uncertainty in wind speed and solar
irradiance to build up a relevant simulation scenario. In
future research, this simulation can be applied in order to
optimise EVs’ dispatching and charging schedule under the
uncertainties of both EVs’ demands as well as ORES supplies.
The wind distribution in Newcastle upon Tyne follows the
Weibull distribution with parameters A = 19.98, B = 1.91.
The RMSE values of 2.26 and 50.79 for wind speed and
irradiance, respectively, demonstrate the model’s accuracy. The
error histogram also indicates that each dataset displays low
error values, with the majority of errors falling between -4.034
and 3.759 (m/s) for wind speed, and -62.95 to 53.17 (W/m2)
for solar irradiance, respectively. Finally, actual meteorological
circumstances were used to verify the forecasts in this study,
with an average error for wind speed of 0.3419m/s, and
for solar power of 30.5652 W/m2. Larger data sets and
additional features for the neural network’s training, validation,
and testing phases could improve the results even more. This
can make the model more robust to cope with bigger changes
in weather patterns.
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